FastDome

FastDome is a set of 3D printed vertices to build an open source geodesic 2V dome using PVC tubes.

I've used 16cm (outer diameter) PVC tubes. The 3D modeling was done using OpenScad and is under a GPLv3 license. Use the SCAD file to fit the vertices to any diameter tube.

Indoor geodesic dome (70cm radius)

For a 70cm radius we'll need 35cm tubes (30) and 45cm tubes (35). I'll put some math here in a couple of days (check the references below).

3D Printing

For a 2V geodesic dome we will need to print a total of 26 vertices

Number Vertex type
10 4
6 5
10 6

Printer settings

res. = 0.32mm

infill = 20%

References

Geodesic Dome Notes and Calculator

OpenSCAD code

// Author: Tiago Charters de Azevedo
// Maintainer: Tiago Charters de Azevedo

// Copyright (c) - 2017 Tiago Charters de Azevedo (tca@diale.org)

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3, or (at your option)
// any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA.

// V2 dome vertices
// strut angle z axis
// https://simplydifferently.org/Geodesic_Dome_Notes?page=3#1V/L1%202/3%20Icosahedron%20Dome

// alpha1=15.86 (5 legs x6)
// alpha2=18.00 (6 legs x10)
// alpha2=18.00 (4 legs x10)

// Notes
//  Indoor r=70cm (door dimensions <=70cm)
// la=38.3cm
// lb=43.4cm
// A x 30: 0.54653 (15.86°)
// B x 35: 0.61803 (18.00°)

// ------------------------------------------------------------
// GNU GPL v2
// nop.head@gmail.com
// hydraraptor.blogspot.com
// See http://hydraraptor.blogspot.com/2011/02/polyholes.html
// ------------------------------------------------------------
function sides(r)=max(round(4*r),3);
function corrected_radius(r,n=0)=0.1+r/cos(180/(n ? n : sides(r)));
function corrected_diameter(d)=0.2+d/cos(180/sides(d/2));

module poly_circle(r,center=false){
    n=sides(r);
    circle(r=corrected_radius(r,n),$fn=n,center=center);}

module poly_cylinder(h,r,center=false){
    n=sides(r);
    cylinder(h=h,r=corrected_radius(r,n),$fn=n,center=center);}
// ------------------------------------------------------------

$fn=2*16;
phi=(1+sqrt(5))/2;
ri=13/2+.2; //PLA
ro=16/2+.1;
h=2*1.2;


module hub(n=5,m=5,ri=13.2/2,alpha=15.86,h=h){
    rm=1.5*ri;
    height=ri*sin(alpha);
    R=ri*cos(alpha);
    v=[0,R+rm,0]-[0,rm,height];
    difference(){
        union(){
            for(i=[0:m-1]){
                rotate([0,0,i*360/n]){
                    hull(){
                        translate([0,rm,height]){
                            sphere(ri,center=true);}
                        translate(v+[0,R+rm,0]){
                            sphere(ri,center=true);}}}}
            // Center
            hull(){
                for(i=[0:n]){
                    rotate([0,0,i*360/n]){
                        translate([0,rm,height]){
                            sphere(ri,center=true);}}}}}

        for(i=[0:m-1]){
            rotate([0,0,i*360/n]){
                hull(){
                    translate([0,rm,height]){
                        sphere(ri-h,center=true);}
                    v=[0,R+rm,0]-[0,rm,height];
                    translate(2*v+[0,R+rm,0]){
                        sphere(ri-h,center=true);}}}}
        // Center hole
        poly_cylinder(h=10*ri,r=ro,center=true);


        // Allow a nail to ground
        if(m==n-2){
            translate([1.5*ri,0,height])
            rotate([0,90,0]){
                poly_cylinder(h=3*ri,r=2.5+.15,center=true);}}
    }}



//Uncomment this
//hub(5,5,ri,15.86);
hub(6,6,ri,18.00);
//hub(6,4,ri,18.00);

Have fun!

Palavras chave/keywords: reprap, 3dprint, dome, geodesic

Criado/Created: 26-06-2018 [14:33]

Última actualização/Last updated: 13-07-2018 [09:50]


Voltar à página inicial.


GNU/Emacs Creative Commons License

(c) Tiago Charters de Azevedo